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ANALYTICAL DETERMINATION OF SPACE STATION RESPONSE TO CREW MOTION AND

DESIGN OF SUSPENSION SYSTEM FOR MICROGRAVITY EXPERIMENTS

by

Frank C. Liu

Professor of Mechanical Engineering

The University of Alabama in Huntsville

Huntsville, Alabama

ABSTRACT

The objective of this investigation is to make analytical deter-

mination of the acceleration produced by crew motion in an orbiting

space station and define design parameters for the suspension system of

microgravity experiments. A simple structural model for simulation of

the IOC space station is proposed. Mathematical formulation of this

model provides the engineers a simple and direct tool for designing an

effective suspension system.
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I. Introduction

Some microgravity experiments to be performed on the IOC space

station require an environment in which the acceleration level must be

below I0-s g. Among the various sources of disturbances, crew motion is

the severe one which can produce acceleration to a magnitude of I0-_ g.

The objectives of this investigation are to define design characteristics

for the suspension system and to find effective means for isolation of

the experiment packages from disturbance. To achieve these goals, the

following have been accomplished.

i. Analytical formulation of acceleration response of IOC to
crew motion

Assumed modes method and modal transformation are used to obtain

mathematical solution for the normal coordinates to an input function

due to crew motion. Acceleration response of any point in the space

station can be analytically formulated.

2. Structural modeling for IOC space station

The finite element model for IOC space station, shown in Figure

I, used by JFC [i] for vibration analysis generates a wide range and

closely spaced spectrum of vibration frequencies (see Table 4.3.3.3-S,

reference I). It makes it extremelydifficult for mechanical design

engineers to identify a particular mode which has dominant effect on the

experiment package. A simple structural model which is made of a rigid

main body (extension of keel frame which supports all the massive

modules), a cantilever beam (the keel frame), and a transverse canti-

lever beam (the solar boom) is proposed for simulation of the IOC. A

complete analytical formulation for this model is made. This formula-

tion provides the design engineers a simple and direct tool for deter-

mination of acceleration and disturbing frequencies acting on the

experiment package. Computations can be carried out by using a pocket

calculator. This model can be easily improved by increasing the

degrees-of-freedom. A simple computer program will do this work.

3. Derivation of design characteristics for suspension system

Consider that a microgravity experiment package is supported by

a spring and a mass-spring-damper vibration absorber is attached to it.

The acceleration magnification factor and the ratio of acceleration

response of package to acceleration input of the support is then derived.

The plots of this factor versus frequency ratio (IOC to mass-spring)

provide engineers design parameters of the suspension system.

4. Significant findings for effective isolation of disturbance

The microgravity laboratory is 23.3/83.2 feet from the center

of mass of IOC with/without the orbiter attached. It is shown by
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numerical study that the acceleration disturbance is greatly reduced when
the orbiter is not present (i.e., microgravity lab is actually 59.9 feet

farther away from the C.M. of IOC). This shows that the most favorable
location beside the C.M. of IOC is the node of the fundamental elastic

vibration mode of the IOC.

2. Analytical Formulation

2.1 Modal analysis of a structure system

A brief presentation of modal analysis of a structure is given here.

Let P be the coordinate of a generic mass point P in a structure and

u(P,t) be its displacement which is expressed in the form [2]

N

u(P,t) - E _i(P)qi (t) (2.1)

ill

where _i(P) is an admissible function and qi(t) is the ith generalized

coordinate of a set N. The equation of motion of the structure system
In matrix form is

[m] + [k] (q) = {Q) (2.2)

where [m], [k], and {q} are the generalized mass, stiffness, and force

matrices, respectively.

The kinetic and bending strain energies of the system are formu-

lated from the following integrals:

T = _/ mp[6(P,t)] 2 dP " ½_fmp'#i2(p)dPqi 2
B B

(2.3)

V ffi½/ Zl[u"(P,t)12dp = ½E/ mp[*i"(P) 12 dPqi2 (2.4)

B B

where mp is the mass density at P and E1 is the bending stiffness of the

structure at P, the prime denotes partial differentiation with respect to

spatial coordinates and the symbol B with the integral sign means inte-

gration over the entire body B. From the above integrals, the elements

of the [m] and [k] matrices are obtained respectively,

_2T ffif mp_i(p)_j(p)dp (2.5)
miJ = aqi_qJ B
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_v = f EI_i"(P)_j"(P)dP (2.6)
kij = aqiaqJ B

Denoting the force acting at P in the direction of u(P,t) by fp(t), then
the virtual work is

6W = ffp(t)_udP =zf fp_i(P)6qidP

B B

(2.7)

It follows that

Qi = aW = f fp_i(P)d P

B

(2.8)

Next, the natural frequencies of the system are determined from the

determinant

Ilk] - ,,2[m]l = 0 (2.9)

and the eigenvectors (or modal columns) {_i} are the solution of the
matrix equations,

([k] - _i2[m]) {_i } = {0} i = 1,2,...,N (2. i0)

The normal coordinates {_} and the generalized coordinates are related

by the transformation

{q} = [_] {n} (2.11)

where the modal matrix

[_1 = [{_i ), {#2 }, ..., {_N }1 •

Applying Eq. (2.11) to Eq. (2.2) and making use of the property of

generalized orthogonality of the eigenvector with respect to [m] and [k],

the equation of motion in normal coordinates is

_j + mJ2 nj = Nj(t)IMjj j = 1,2,...,N (2.12)

where

Mjj = {_bj}T[m]{d_j} (2.12a)
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_j2 = {¢j}T[k](@j}/Mj j

Nj(t) = {_j}T(Q}

(2.12b)

(2.12c)

2.2 Structure response to disturbing force

Consider that a disturbing force fa(t) is applied to the structure

at Pa' from Eqs. (2.8) and (2.12c) one obtains

Nj (t) - E d_kj@k(Pa)fa(t)

k=l

(2.13)

where _kj is the kth element of the jth eigenvector. The response at

point Pe in the structure, U(Pe,t), can be obtained by using Eqs. (2.1),

(2.11), and (2.13). It results in

i i j

= _j [( i_ _ij_i(Pe) ) (k_ _kj_k(Pa))] _j(t)/Mjj

where _j (t) denotes the solution of the differential equation,

_j + _j2nj - fa(t) with nj(0) ffiqj(0) = 0 .

(2.14)

(2.15)

2.3 Model of crew motion and response function

The motion of an astronaut inside a space module is started by push-

ing one wall and motion is stopped by pushing the opposite wall. A

simple mathematical model is suggested [i] as shown in Figure 2.
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fa(t) =

(fo/tl)t

0

(fo/tl)(t - tl4)

0

0 < t _ t I

tI < t ! t13

t13 < t _ t14

t14 < t

(2.16)

The magnitude of f is 25 ibs and t I, t13, and t14 are I, 13, and 14O
*

seconds, respectively. These notations for tlme wlll be kept through

the formulation for the sake that one may wish to change their magnitudes

and secondly, that the equation involved will have appropriate units

(use sinwtl3 rather than sinl3w where _ is in rad/s). The solution of

equation (2.15) is readily obtained. Denoting that

q(t) _ (fo/w3tl)U(t) (2.17)

the dimensionless displacement function U(t) is given by

0 < t < t 1 U(t) = wt - sln_t (2.17a)

tI < t_< t13 U(t) = - sin_t + sln_(t - t I) + UtlCOS_(t - t I) (2.17b)

t13 < t _ t14 U(t) = w(t - t14) - sin_t + sinu(t - tI)

- sinw(t - t13) + Utl[COSW(t - tI)

+ cosw(t - t13)]
(2.17c)

t14 < t U(t) = - slnut + sinu(t - t I) - sin_(t - t13)

+ sln_(t - t14) + _tl[COS_(t - tI)

+ cosw(t - t13)] (2.17d)

The function U(t) is continuous and has continuous first derivative

(velocity); its second derivative is only piecewise continuous. Denoting

_(t) = (fo/_tl)A(t) (2.18)

and differentiating Eq. (2.17) twice, one obtains the dimensionless

acceleration A(t),
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O< t_< tI

t I < t _< t13

t13 < t <__t14

t14 < t

A(t) = sinut

A(t) -- sin_t - sin_(t - tl) - WtlCOS_(t - tl)

A(t) -- sinut - sin_(t - tl) + sinu(t - t13)

- _t I [cos_(t - tl) + cos_(t - t13)]

A(t) = sin_t - sin_(t - tl) + sinw(t - t13)

- sin_(t - t14 ) -_t I [cos_(t - t I)

+ cos_(t - t13)]

(2.19a)

(2.19b)

(2.19c)

(2.19d)

The functions of U(t) and A(t) are plotted versus time for frequencies

ranging from 0.I to 0.4 as shown in Figures 3 and 4 respectively. Now,

the displacement and acceleration response of point P in the space

station can be expressed in the form e

I _ I

J
_kj_k(Pa)) Uj (t) (fo/_j_tlMjj)

(2.20a)

a(Pe't) = _j (_i $ij_i(Pe))(_k Skj_k(Pa)) Aj(t)(fo/mjtlMjj )

(2.20b)

The subscript "j" with U and A denotes that these functions are corres-

ponding to _ = u..
3

2.4 Modeling of IOC space station

The structure of the 10C space station may be treated as a struc-

tural system having three elements. The main body is a frame structure

which supports all the massive members, the vertical and horizontal HAB

modules, the vertical and horizontal LAB modules, logistic and common

modules, and above all, the orbiter. Attached to the main body is a

keel frame structure 296 feet in length which supports an antenna system

at its other end and a transverse boom at a distance 165.5 feet from the

main body. The third member of the system is a transverse boom which

is a frame structure 264 feet long. Its main purpose is to carry eight

solar arrays and power system radiators.
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A simple structural model for the IOC proposed consists of a rigid
main body which supports a cantilever beam (keel frame) and a transverse
cantilever beam (solar boom) mounted on the keel. As shown in Table 1
in Appendix A, the modules, equipment, solar arrays, fuel tanks, orbiter,
etc., are treated as concentrated masses. However, the rotational
momentsof inertia of the orbiter and solar arrays must be included in
forming the massmatrix.

Motions of the IOC in X-Z and Y-Z planes will be treated separately.
In each plane the proposed IOChas four degrees-of-freedom, namely,
rigld-body translation, rigid-body rotation, and one bending modefor
each cantilever beam. Thus, the corresponding admissible functions are

_I(P) = i (2.21a)

_2(P) = F (2.21b)

_3(p ) --_2 _ _3/3 (2.21c)

_4 (P) = _2 _ _3/3 (2.21d)

where _ = z/£ k and _ = Y/%s in which £k and £s

(296 ft) and solar boom (132 ft), respectively.

are the length of the keel

2.5 Modal analysis of IOC model

Based on Eq. (2.21) the mass and stiffness matrices for the model

are formulated in Appendices A and B. The matrix equation of free

motion of the IOC is

m

mll m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

ql

q2

o.

q3

q4_
B

m

0

0

+

0

0

w

0 0 0

k22 0 0

0 k33 0

0 0 k44

l .

ql

q2

q3

q4

ii
01

m

(2.22)

One may eliminate the rigid-body translation ql from the system by solv-

ing ql in terms of the rest of q's from the first equation of Eq. (2.22)

and substituting it into the remaining equations. A further simplification

can be made by disregarding the small coupling effect of the rigid-body

rotation q2 and the elastic modes q3 and q4 due to gravity gradient

torque. Thus, one may eliminate both ql and q2 from the system and obtain
the following:
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(2.23)

m43 m44J q4 + 303 k44 q4

(2.24)

where

[T] ffi_ r|mll
|

m21 m22J L_23 m24J

[%3 %41_[m33"341_["3,m321r,_1

L_43%4J-Lm43m44J'Lm4_m42 j _"J

The two elastic frequencies of the IOC can be written out directly

in the form

2

_1,2

m33 k44 + mA4 k33 T /(%3 k44 - _44 k33 )2 + 4m34 _43 k33 k44

2(_33 _44 - _34 %3 )
(2.25)

and the eigenvector is

{_i} ffi

TII(_34 _i 2) + T12(k33 - _33 _i 2)

T21_34 _i 2) + T22(k33 _33 _i 2)

-- 2
m33 _i

2
k33 - _33 _i

i = 1,2 (2.26)
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2.6 Rigid-body librational motion of IOC

The equations of librational motion of an orbiting body which has

its principal axes parallel to the orbital axes subjected to disturbing

torque M can be written directly in the form [3]

Zx_"x + 3 %2(Iy - Zz)e x - MX (2.27)

+ 3 _Oo2 - Iz)8 = M (2.28)lyS"y (Ix Y Y

where the l's are the moments of inertia about their respective principal

axes through the center of mass. The orbital frequency of a circular

orbit is

= _ rad./s (2.29)
o

where R is the orbital radius and the gravitational constant

= 1.407 x 1016 ft3/s 2

= 3.986 x 1014 m3/s 2

Thus, Eqs. (2.27) and (2.28) yield the librational frequencies

_x = _o _(ly - Iz)/l x (2.30a)

my = _o _(Ix - Iz)/Iy (2.30b)

2.7 Response of IOC to crew motion due to rigid-body modes

As shown in Figure 6, due to the arrangement of the modules, crew

motion will create a disturbing force either in x-direction (motion in

horizontal modules) or z-direction (motion in vertical modules). Hence,

the torque M is negligible in comparison with M which has the magni-
x y

tudes,

fxZaMy =
fX
Z a

(motion in horizontal modules)

(motion in vertical modules)

(2.31)
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As indicated by Eq. (2.30), the librational frequency is approximately

equal to _'times the orbital frequency (Ix • ly, Iz << Ix , see Table I).

The crew kicking motion is completed in a time interval of I second which

is very short in comparison with the period of librational motion of 3,300

second. This means that the torque can be treated as an impulse torque.

The action of an impulse torque is equivalent to give the space station

an initial angular velocity, i.e.,

y = / My(t)dt=  y(0)ly
(2.32)

The solution of Eq. (2.28b) is simply

A

Oy- (My/_y)Sin_yt (2.33)

Using the mathematical model for crew motion given by Eq. (2.16), one

obtains the response at P
e

U(Pe,t) = ZeOy

i

[_ ZeZafot 1/_yIy) sin_. yt
" _I ZeXafot i/_yly) sin_y t

(motion in horizontal module)

(motion in vertical module)

(2.34)

The magnitude of acceleration produced by crew motion at Pe is

ZeZafo_ytl/21y
a(ee) ffi

LZeXafomytl/21y

(motion in horizontal module)

(motion in vertical module)

(2.35)

3. Numerical Results of Acceleration Due to Crew Motion

Using data given in Table 4.3.3.4-2 to 4.3.3.4-4 of Reference I,

Table 3 is formed for the formulation of the mass matrix for IOC space

station. Note that the total weight given by Tables 4.3.3.4-2 and

4.3.3.4-4 [I] is 77,600 ibs heavier than that given by Table 2. In an

effort to match the total weight given in Table 2, some of the weights

are not included. There is a significant difference on the location of

the center of mass between the present model to that given in Table 2,

as shown in the following:

1345



With Orbiter

Without Orbiter

Table 2 Present Model Difference

68.3 ft 113.8 ft 14.4 ft

128.2 59.5 8.8

Consider that the distance from the reference point to the micro-

gravity experiment is equal that of the location of crew motion, i.e.,

z = z = -55 ft. The magnitude of acceleration on the microgravitye c

experiment due to crew motion as given by Eq. (2.20b) is

ae = [_lj + _2j(Ze/£k )]2 (fo/Mjj_jtl) [Aj(t)]max J = 1,2 (3.1)

The value of [Aj (t)]ma x can be estimated from curves given in Figure 4

for a given value of _. The summation is omitted so that a is calcu-
e

lated for each mode. Based on the librational motion approach, one has
from Eq. (2.35)

a = Ze2fo_ytl/21 (3.2)
e y

The numerical resulted obtained are summarized in Table 4.

It is important to note the following:

(I) No direct comparison can be made on the frequencies obtained

to that given in Table 4.3.3.3-3 [i] due to the difference of inertia

properties of the models, and furthermore, the JSC model has no distinct

fundamental mode that can be singled out.

(2) The acceleration level obtained here is about one order smaller

than that given by Table 4.3.3.5-15 [I]. This is due to the fact that

the inertia data given by Table 4.3.3.5-6 [i] is about I/3 of that given

by Table 4.3.3.5-6 [I] (without orbiter). In addition, the disturbance

torque given by Table 4.3.3.5-7 [I] is more than 2 times the value used

here. Thus, the magnitude of accelerations presented in Table 5 are
reasonable.

(3) Motion of the space station in Y-Z plane will occur if the

disturbing force is in the direction parallel to the solar boom.

(4) The acceleration given by the librational motion is 10-3 of

that given by elastic motion. This, due to the frequency of librational

motion, is only 10-3 of the frequency of elastic motion.
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4. Design Characteristics of Suspension System

4.1 Acceleration response of a vibration absorber system

Consider that a microgravity experiment package is mounted on the

laboratory module structure which has motion u (t) as a result of crew
O

motion or other disturbance. As shown in Figure 3, Uo(t) is approximately

a harmonic. It is required to design a suspension system which can

effectively reduce this disturbance over some frequency range. Vibration

can be effectively reduced by using a vibration absorber [4] which is a

mass-spring-damper system attached to the main mass-sprlng system as

shown in Figure 7.

Denoting uo, u I, u2, the absolute displacement of the structure,

main mass, and absorber mass, respectively, the equations of motion of

the system are

mlu I + c61 + (k I + k2)u I - c6 2 - k2u 2 - klUo(t) (4. la)

m2_ 2 + cd2 + k2u 2 - c61 - k2u I = 0
#n

t_. Ib)

Letting the input Uo(t) be a harmonic disturbance, one may put

Uo(t ) = Uo ei_t , u I - UI ei_t , and u 2 = U2 ei_t i = _ (4.2)

where U 1 and U 2 are complex quantities that can be determined from the

metric equation

(kI + k2 - ml _2 + ic_)
- (k2 + ic_) (k2 - m2_2 + ic_)J V2 = (4.3)

If one wishes to determine acceleration response rather than displace-

ment, set

Ul = A!eimt with A I = - u2B I (4.4)

Now, let M a denote the magnification factor of acceleration, the ratio of

A I to input acceleration,
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Ma = IA111uo 2

First, introduce the following dimensionless parameters:

k = kl/k 2 _ = m2/m I _ = c/2 m2/_ 2 r = _/_n

It can be shown that

where

_kr2) 2 + 4_k_2r2]/D} 1/2

4.2

(4.5)

(4.6)

(4.7)

D = {I - [I + (l+k)_]r 2 + _kr2} 2 + 4_k_2r 2 [I + (l+_)r2] 2

Design considerations

The magnitude of the magnification factor of acceleration depends on

four parameters:

k, the spring ratio (main spring/absorber spring),

_, the mass ratio (absorber mass/main mass),

_, damping factor (damping coefficient/critical damping),

r, frequency ratio (space station frequency/natural frequency of

main mass-spring system).

To plot M a versus frequency ratio squared as shown in Figure 8, six sets

of curves are illustrated for _ = 0.2. The first three sets are for

fixed values of _ = 0.01, 0.025, and 0.05, respectively, with various

values of k. The next three sets are for fixed values of k = I0, 15,

and 20, respectively, with various values of W. All these curves have

one common characteristic M which can be effectively reduced for r 2 > 2
' a

Since the frequency of the IOC space station in elastic vibration is about

i tad/s, it requires that k I > 2Wl/g. For a microgravity experiment

package of 1,000 Ibs, the spring constant of the suspension must be less

than 5 ib/in. For the frequency range 0.5 < r 2 < 2, M can be made less
a

than 0.5 by a proper combination of _ and k.

1348



5. Conclusions

A simple structural model for simulation of IOC space station has

been presented and formulation of this simple model provides engineers

a simple and direct method for computing the fundamental frequencies of

the space station and determining the magnitude of acceleration at any

point produced by crew motion. Acceleration response of a mass-spring-

absorber system to a moving support is also formulated. Design engineers

can use plots of acceleration magnification factor versus frequency

ratio squared to determine design parameters for the suspension system

of the microgravity experiment package.

The following are some significant findings:

(i) The acceleration due to librational rigid-body motion is 3

orders smaller than that due to elastic bending motion.

(2) The frequency of librational motion is 1.8 x 10-3 tad/s, which

is approximately /_times the orbital frequency.

(3) The frequencies of elastic motion of the simple model are in

the range 0.6 to 1.5 rad/s.

(4) Only the fundamental bending mode has dominant contribution to

the acceleration, therefore, a simple model is adequate.

(5) An effective suspension system can reduce the acceleration to

i/4 of its magnitude, at most.

(6) The ideal loca=ion of the microgravity lab does not have to be

near the center of mass of the space station.

(7) The most effective means to eliminate acceleration is to have

the experiment module near the nodal point of the fundamental bending

mode, as illustrated in Figure 9. This means that the factor (411 +

421Ze/_k) in Eq. (4.1) becomes very small. Example: The IOC without

orbiter has moved the lab module 59.9 ft further away from the center of

mass, but the acceleration is reduced 3 orders smaller than the IOC with

orbiter.

(8) It is favorable to perform the microgravity experiments when

the orbiter is not present.

(9) It is possible that by rearranging some massive elements, a

minimum value of (411 + 421Ze/_k)/Mll can be reached. However, this

has to be done by trial and error method.
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Appendix A. Formulation of MassMatrix

Notations:

lox, I oy
momentof inertia of orbiter about x- and y-axis through
C.M. of orbiter, respectively

Isx, I sy
momentof inertia of solar arrays about x- and y-axis
through solar boomat the attachment, respectively

IUB momentof inertia of upper boomabout x-axis through end
of keel

_B momentof inertia of lower boomabout x-axis through
attachment

£k

£
S

me

M
S

m
s

m
r

m
o

U x, Uy

Ys

zk

length of keel frame

length of solar boom

mass of keel frame alone

kth concentrated mass attached to keel at distance zk

mass of solar boom frame alone

sth concentrated mass attached to solar boom at Ys

rth concentrated mass attached to rigid main body at zr

mass of orbiter

displacement in x and y direction respectively

= ys/£s, coordinate of concentrated mass attached to solar boom

= Zk/£k,_ coordinate of concentrated mass attached to keel

z
o

coordinate of orbiter

subscripts &

summation index k(keel), r(rigid main body), s(solar boom)

A-I. Motion of IOC in X-Z Plane

The kinetic energy of rigid main body is
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T R = i/2 Z mrUx2(Zr )

r

= 1/2 E mr[_l(Zr)ql + _2(Zr)q212 + 1/2 Ioy[_(z o)

r

The kinetic energy of keel structure is

TK = 1/2 Z mk[_l(Zk)ql + _2(zk)q2 + _3(zk)q312

k

+ I/2 Mkf[_l_ I + _2(z)_2 + _3(z)q3 ]2 dz/_ k

+ 1/2 E Isy[_2(Zs)q2 + _3(Zs)q3 ]2

S

The kinetic energy of

T S = I/2 M s

+ 1/2

solar boom is

[_01(Zs)_ll + _02(Zs)Cl2 + _4(Ys)Cl4]2dYs/_s

E ms[_Ol(Zs)Cll + _02(Zs)C[2 + _4(Ys)Cl4]2

S

_2 ]2 (A-l)

(A-2)

+ 1/2 E Isx[_(ys)_4]2 (A-3)

By using Eq. (2.5) the elements of the mass matrix are obtained as follows:

mll = Mtotal = Mr + _ + Z mk+ Ms + E ms

k s

m12 = E mr_r + 1/2 Mk + E mk_k + (Ms + E ms)_s ,

k sr

Z mk(E'k 2 - 1/3 _k 3) + (M s + Z ms)(_'s 2m13 = 1/4 M k +

k s
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= + E ms(ys2m14 i/4 Ms

m22" Z mr_'r2 + i/3Mk +

= 11 + 3(I-
k

- 1/3 ys 3)

k s s

Z --3113 _-k)+ (Ms + ms)(l - 113 _s) zs

+ (_ I y) z(2 - -- )/_k2
s

m24 = Zsml4

m34 = (_'s2 - I/3 _s 3) m14

m33- (11/io5)Mk

s

k s

+ (E Isy) (2Z-s- _s2)21_k2

m44 = (IIII05)Ms + Z ms(Y's2 - i13 _'s3)2

+ [_s2(2 - Ys2)2}/£s 2

+ 41sx{[_sl (2 - Ysl )2

A-2° Motion in Y-Z Plane

The kinetic energy of rigid main body is

rR = I/2 Z mr[_l(Zr)_l + _2(Zr)_2 ]2 + 1/2 lox[_(Zo)q2 ]2

r

+ 1/2 IUB[,_(ZuBlq212 (A-4)
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The kinetic energy of the keel structure is

TK - 1/2 Emk[,l_l + ,2(Zk)42 + *3(zk)q3 ]2

k

+ 1/2 Mk f[_l_l + 02(Zk)_2 + _3(Zk)_3]2dZk/tk

k

+ I/2 XUB[0_(Zs)_2 + _(zs)q2 ]2 (A-5)

The kinetic energy of the solar boom structure is

Ts - 1/2 Hs f[ i i

+ 1/2 M
S

+ _2(Zs)Cl2 + _3(Zs)Cl3]2dYs/ts

f{[_2q2 + _b_(Zs)qs]y s - _4(Ys)q4}2dYs/ts
S

{ms[$1q 1 + _2(zs)'q2 + _3(Zs)q3 ]2

+ [¢_12 + _(zs)_3]Y s - _4(Ys)q4 ]2}

+ 1/2 E Isx[_2q2 + _3(Zs)Cl3- _4(Ys)q4 ]2

S

(A-6)

Applying Eq. (2.5) results in the mass matrix for motion in Y-Z plane:

m11 " RT = (mll)xz

m12 = (ml2)xz

m13 ffi(ml3)xz
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m14 = 0

m22.(m22)x_. + (,_)2 [_(isx_ isy ) + l/3_Hets2 +
8 a

+ Iox- Zoy+ + z B]

m23 = (m23)xz + _2*3(zs)['_ (sx - Isy) + E msYs 2 + l/3_Msts2]

a s

+ ! !IUB92_ 3 (t k)

m24 = Mat s + msYa_4(y s) +

m33 = (m33)xz + [ msys2 + _ (Isx - Isy [_b_(Zs)]2 + TUB[,:_(tk)] 2
S a

m- T ! . w Zm34 Msts + E ms*4 (Ys')Ys + E sx*4 (Ys) *3 ( s )

S a

m44 "= (m44)xz

The subscript "xz" denotes element of mass matrix of motion In X-Z plane.

A-3. Mass and Inertla propertles for IOC model

Table 3 is formed based on data glven by Table 4.3.3.4-2 to 4.3.3.4-4 [1]
for the purpose of formulation of the mass matrix.
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Appendix B. Determination of Stiffness Matrix

B-1. Bendin S strain energy

The bending strain energy of keel and solar boom structure is given by

/y tk El "

S

V = 1/2 (EI)k[_q3]2dZk_ + I/2 ( )s[t4(Ys)q4]2dYs

O O

Applying Eq. (2.6), one obtains the following non-zero elements of the
stiffness matrix

k33 = 4(EI)k/3tk 3 k44 = 4(El)s/3ts 3

B-2. Moment due to gravity gradient

Using the formula given by Reference 3, the following are obtained:

Motion in X-Z Plane

My - - 3(_/R3)(Ix - Iz)q2 , k22 - 3(_/R3)(I x - Iz)

Motion in Y-Z Plane

Mx - - 3(p/R 3)(Iy " Iz)q2 , k22 - 3(p/R3)(Zy - I z)

where the moments of inertia are about the axes through the c.m. of the

IOC space station.
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Appendix C. Numerical Results

C-I. Motion in X-Z plane (IOC with orbiter attached)

[m] "

[_8900 -2758 1096 171.6 ]

2758 3168 831.9 96.0 /
1096 831.9 483.7 43.7 |

171.6 96.0 43.7 122.9_

_1,1135 1

.9546
{¢iI = lO.118

.1639
_ "27701

.11651
{¢2 } ffi -6.49 |

411.87 j

2
oJ1 - 1.0431

2
o_2 = 6.64

MII - 29157

M22 - 1488

C-2. Motion in X-Z plane (lOC without orbiter attached)

11590 376.2 1096 171.6]

= | 376.2 1829.6 831.9 96.0
[m] | 1096 831.9 483.7 43.7

L 171.6 96.0 43.7 115.2

.054
{¢i } = .429

.1095

{¢2} ffi .769.923
7.603

2
m I - 2.0243

2
to2 - 7.436

MII - 191.5

M22 - 32169

C-3. Motion in Y-Z plane (IOC with orbiter attached)

[m] ffi
18900 -2758 1096 0 ]

2758 3298 872.3 -92.5
1096 872.3 513.5 -74.5

o -92.5 -74.5 122.9

r .3673 ]

.1 1.194
{¢i) i -3.332

L .1674

I_ "3332l9829|
{¢2 ) = 31274 l

L-5.'9J

2
toI = .8022

2
_2 - 7.881

Mll - 959.8

M22 - 3312
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C-4. Motion in Y-Z plane (IOC without orbiter attached)

[m] =
11590 369.8 1096 0 ] _i 2 - .4301

369.8 3298 872.3 -92.5J1096 872.3 513.5 -74.5 2
0 -92.5 -74.5 II _2 " 7.046

r . 1906]

l .51o l
{_i} =/-2.191 |

L-1 716j

r .3221]

_-/ "54381
{_P2} | -3.589 |

L-13.17J

Mll = 927.5

M22 - 18582

C-5 Computation of accelerations

Using the data given above, Eq. (3.1), and with the aid of Figure 4

for the value of [A(t)]max, acceleration of the experiment package can

be calculated. The results are shown in Table 4.
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Figure 8 Acceleration Magnification Factor
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Table I.

Component

Booms and Keels

30-1nch Astro

Mast

Properties of Analytical Reference Configuration

Space Station Model (Table 4.3.3.3-1 [i])

Bending Torsional Mass Bending Torsional

Stiffness Stiffness Length Strength Strength

(ft-lbs-ft) (Slugs/ft) (ft-lbs)

1.31 E+9 3.18 E+8 0.25 35,000 15,000

3.13 E+6 2.08 E+5 2.3 3,480 208

Table 2. Inertial Properties of Analytical Model

(Table 4.3.3.3-2 [i])

Case

Without

Payloads

and Orbiter

With

Payloads

Only

With

Orbiter

Only

With

Payloads

and Orbiter

Weight C.G. Coordinates

(ibs) (ft)

269,000 (I.i,0,84.2)

373,200 (-I.i,0,128.2)

508,800 (5.7,0,34.4)

608,600 (3.59,0,68.3)

Moments of Inertia

(ib-ft-sec 2)

(8.63 E+7,

7.82 E+7,

1.20 E+7)

(2.06 E+8,

1.98 E+8,

1.45 E+7)

(1.45 E+8,

2.37 E+8,

1.35 E+7)

(3.21 E+8,

3.14 E+8,

1.62 E+7)
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Table 3. Masses and Inertia Properties Used for IOC Model

r Masses attached to main body

I Fuel tank and gases
2 Module radiators

3 Five-bay platform
4 COM 1203

5 Logistics module
6 OMV and kits

7 Horizontal lab

8 Vertical lab

9 Keel extension

I0 Vertical lab

ii Lower boom

Z ft
r

94.5

82.5

76.5

64.0

71.5

67.5

45.0

34.5

27.0

19.5

13.5

zr ft

- 5.5

- 17.5

- 23.5

- 26.0

- 28.5

- 32.5

- 55.0

- 65.5

- 73.0

- 80.5

- 86.5

W ibs
r

17,002
3,000
1,403

11,000
37,823
23,750
54,295
27,067

970
47,709

728
12 Horizontal lab, SAA0207 and SAA0201

13 Orbiter

s Masses attached to solar boom

Solar boom structure

Puw=_ system __a_ .....
"2 TDM 2010

3 4 inboard solar arrays

4 4.outboard solar arrays

k Mass attached to keel

Z ft
S

265.5

_ 5

265.5

265.5

265.5

Upper and lower keel structure

1 Remote manipulator

2 Refuel attachment, tanks and tools

3 TDM 2570

4 Instruments and storage shelter

5 Storage boxes and tools
6 Service attachments

7 TDM 2560

8 Satellite

9 Upper boom and antenna system

Rotational Moment of Inertia

z ft
S

165.5

I_.5_J

165.5

165.5

165.5

Zk fn

100-396

162.0

107.5

210.5

212.5

272.5

290.5

295.5

324.5

396.0

Ys ft

0-132
KL N
J_e_

63.4

78.0
132

zk ft

0-296

62.0

7.5

110.5

112.5

172.5

190.5

195.5

224.5

296.0

I ft-lb-s 2 I

37,089

235,400

W ibs
S

2,345

1,540

4,787
4,787

Wk Ibs

2,504

2,000

4,625

2,000

4,625

9.850

3,750

7,055

20,000

17,734

ft-lb-s 2

Orbiter (about c.m. of orbiter)

Solar array (about attachment) each
Parallel to Nadir

Normal

Upper boom with antenna system

Module radiators (about attachment)

Power system radiators (about attachment)

X

7 x 106

I01,000

2,790

158,800

583,500

750

Y

8 x 106

107,300

107,300
small

4,470

25,120

Note: Z is measured from the bottom end of the keel extension and z is

measured from the joint of keel and keel extension
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Motion

Bending

Libra.

Motion

Table 4. Numerical Results for IOC Model

Motion in X-Z Plane

w and
With Without

a
e Orbiter Orbiter

Motion in Y-Z Plane

With Without

Orbiter Orbiter

rad/s 1.021 1.423

a 1.14 g x 10-5 1.44 g x 10-8
e

rad/s 2.577 2.730

a 2.26 g x 10-6 1.38 g x 10-7
e

rad/s 1.89 x 10-3 1.89 x 10-3

a 0.254 g x 10 -8 5.13 g x 10-8
e

0.896

0.86gx10 -5

2.810

0.66gx10 -5

1.85xi0 -3

0.24gx10 -8

0.656

1.17 g x 10-5

2.654

2.9 g x 10-6

1.81 x 10 -3

4.72 x 10 -8
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